martes, 5 de febrero de 2013

2012-2013. Tema 1: Divisibilidad. Números Enteros.

Ideas Fundamentales del tema:

Número Primo: Aquellos que solo son divisibles por si mismos y por la unidad.
Número Compuesto: Aquellos que son divisibles por mas números.

Ejemplo: 31 es primo, porque solo se pueden dividir por 1 y por 31.
Ejemplo: 33 no es primo, sino compuesto, porque hay mas números que lo dividen,
concretamente 1,3,11 y 33.

Múltiplo: Un número es múltiplo de otro cuando se puede obtener multiplicando el segundo por otro número:

Ejemplo: 12 es múltiplo de 2, porque 12=2x6
Ejemplo: 24 es múltiplo de 3, porque 24=3x8
Ejemplo: 26 no es múltiplo de 5, porque no hay ningún número que al multiplicarlo por 5 sea igual a 26.


Divisor: Un número es divisor (ó factor) de otro si se puede dividir el segundo entre el primero de forma exacta.

Ejemplo: 4 es divisor de 36, porque 36 : 4 = 9 (división exacta).
Ejemplo: 8 es divisor de 32. porque 32 : 8 = 4 (división exacta).
Ejemplo: 5 no es divisor de 24, porque 24 : 5 no es una división exacta.


Criterios de divisibilidad:

Divisible por 2: Si termina en 0 ó en cifra par.

Ejemplo: 12 es divisible por 2, porque su última cifra (2) es par.
Ejemplo: 130 es divisible por 2, porque su última cifra es 0.
Ejemplo: 188 es divisible por 2, porque su última cifra (8) es par.
Ejemplo: 195 no es divisible por 2, porque su última cifra (5) no es par.

Divisible por 3: Si la suma de sus cifras es divisible por tres.

Ejemplo: 192 es divisible por 3 porque la suma de sus cifras (1+9+2=12) es divisible por 3.
Ejemplo: 288 es divisible por 3 porque la suma de sus cifras (2+8+8=18) es divisible por 3.
Ejemplo: 185 no es divisible por 3 porque la suma de sus cifras (1+8+5=14) no es divisible por 3.

Divisible por 5: Si termina en 0 ó en 5.

Ejemplo: 75 es divisible por 5, porque termina en 5.
Ejemplo: 200 es divisible por 5, porque termina en 0.
Ejemplo: 198 no es divisible por 5, porque no termina ni en 0 ni en 5.

Divisible por 7: Es necesario hacer la división para ver si es exacta.

Divisible por 11: Si la resta de las cifras pares menos las impares (ó viceversa) es 0,11 ó múltiplo de 11.

Ejemplo: 9317 es divisible por 11, ya que ( 9 + 1 ) - ( 3 + 7 ) = 0
Ejemplo: 72578 es divisible por 11, ya que ( 7 + 5 + 8 ) - ( 2 + 7 ) = 11
Ejemplo: 92939 es divisible por 11, ya que ( 9 + 9 + 9 ) - ( 2 + 3 ) = 22 ( que es múltiplo de 11)
Ejemplo: 18356 no es divisible por 11, ya que ( 8 + 5 ) - ( 1 + 3 + 6 ) = 3 ( que no es múltiplo de 11)

ESTOS CRITERIOS SON LOS QUE UTILIZAREMOS PARA HACER LA DESCOMPOSICIÓN FACTORIAL DE CUALQUIER NÚMERO: ( SE PRUEBAN LOS NÚMEROS EN ESTE ORDEN: 2,3,5,7,11 ...).

DESCOMPOSICIÓN FACTORIAL:

Hacemos los siguientes pasos:
1) El número que queremos descomponer a la izquierda.(Ejemplo 90)
2) A su lado una línea vertical.
3) Probamos los números primos mayores de 1, empezaremos por 2,3,5,7,11 ...
4) Cuando la división sea exacta ponemos debajo el resultado. (Ejemplo 45)
5) Repetimos los pasos con el resultado hasta llegar a 1.
6) Los números de la derecha son los factores del número original.










Vemos otro ejemplo.









MÁXIMO COMÚN DIVISOR (mcd):

Una vez hecha la descomposición factorial de los números tomamos los factores comunes con el menor exponente.




MÍNIMO COMÚN MÚLTIPLO (mcm).

Una vez hecha la descomposición factorial de los números tomamos los factores comunes y los no-comunes con el menor exponente.



RESUMIENDO:





















OPERACIONES COMBINADAS CON NÚMEROS ENTEROS:















AHORA VEMOS UNOS EJERCICIOS RESUELTOS PARA QUE PRACTIQUEIS:

No hay comentarios:

Publicar un comentario